
BOHR’S CORRESPONDENCE PRINCIPLE

IN THE NELSON MODEL

MARCO FALCONI

Notes of the talk. Based on a joint work with Zied Ammari [1].

I. Bohr’s correspondence principle in mathematics. When we talk

about the correspondence principle, we mean the following quantum-

classical dictionary.

Quantum (Non-Commutative) } Ñ 0 Classical (Commutative)

States Non-Comm. probabilities ÝÑ Class. probabilities

Observables Non-Comm. Random Variables ÝÑ Class. Random Variables

Dynamics Unitary linear evolution ÝÑ Nonlinear Hamiltonian flow

Bohr’s correspondence principle is necessary for a quantum theory to

be in agreement with observation (since at macroscopic scales systems be-

have commutatively). For Quantum Field Theories however, even at the

formal level it is not clear whether the correspondence principle should

hold or not, especially when a renormalization procedure is involved.

In these notes we concisely discuss the correspondence principle for

the renormalized model introduced by E. Nelson, that describes non-

relativistic bosons in interaction with a scalar relativistic bosonic field

with Yukawa coupling. We omit references throughout these notes; the

interested reader may consult [1].

II. The classical system. The classical motion is described by a system

of two coupled equations: one is Schrödinger and the other Klein-Gordon,

with non-linear Yukawa coupling.

(S-KG[Y])

#

iBtu “ ´∆u`Au

pl` 1qA “ ´|u|2
#

up0q “ u0

Ap0q “ A0 , BtAp0q “ 9Ap0q

.
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In these notes we set Mu “
1
2 , mA “ 1, and no external potential acting

on u; but the results hold in a more general situation.

The system (S-KG[Y]) is known to be globally well-posed on suit-

able Sobolev spaces, e.g. on H1pR3,Cq ‘H1pR3,Rq ‘ L2pR3,Rq. How-

ever it is convenient to make a change of variables from the real-valued

pA, BtAq to the complex valued α given by A “
?

2ReF´1pω´1{2αq,

BtA “
?

2ImF´1pω1{2αq. Therefore we obtain

(S-KGα[Y])

$

’

&

’

%

iBtu “ ´∆u`Apαqu

iBtα “ ωα`
1
?

2ω
F p|u|2q

#

up0q “ u0

αp0q “ α0

.

Proposition II.1. S-KGα[Y] is globally well-posed on the energy space

H1pR3,Cq ‘FH1{2pR3,Cq and on L2pR3,Cq ‘ L2pR3,Cq.

In addition, S-KGα[Y] can be viewed as an Hamiltonian system, with

energy functional

(1)

E pu, αq “ xu,´∆uy2`xα, ωαy2`
1

?
2π

3

ż

R6

1?
2ω
pᾱe´ik¨x`αeik¨xq|u|2dxdk

densely defined on DpE q Ě H1 ‘FH1{2.

III. The quantum system. The quantum dynamics should be charac-

terized by the following formal operator on H “ Γs
`

L2pR3q ‘ L2pR3q
˘

:

H “

ż

R3

ψ˚pxqp´∆xqψpxqdx`

ż

R3

a˚pkqωpkqapkqdk
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

H0

` 1
?

2π
3

ż

R6

1?
2ωpkq

ψ˚pxq
`

a˚pkqe´ik¨x ` apkqeik¨x
˘

ψpxqdxdk ;

where ψ# and a# are the }-dependent annihilation/creation operators

corresponding to the first and second L2-space respectively. More pre-

cisely, we have rψpxq, ψ˚px1qs “ }δpx´x1q; and rapkq, a˚pk1qs “ }δpk´k1q.
H is not defined as an operator because of the a˚-creation term in the

interaction, but x ¨ , H ¨ yΓs is a densely defined quadratic form.

To rigorously define the dynamics it is possible to perform a self-energy

renormalization. We introduce the fibration H “
À8

n“0 Hn with Hn “

L2
spR

3nq b Γs
`

L2pR3q
˘

, and the self-adjoint operator Hσ, σ P R`, with

regularized interaction. Then we perform a dressing transformation in
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order to single out the divergent self-energy. Define the dressing “group”

pe´
i
} θTσpσ0qqθPR, with σ0 P R

` and

Tσpσ0q “

ż

R6

ψ˚pxq
`

a˚pkqgσpσ0, kqe
´ik¨x`apkqḡσpσ0, kqe

ik¨x
˘

ψpxqdxdk ,

gσpσ0, kq “ 1tσ0ă| ¨ |ďσupkqg0pkq where g0 P L
2pR3q is suitably chosen.

Proposition III.1. 0 ď σ0 ď σ ď 8 ñ Tσpσ0q self-adjoint.

Finally, we define the dressed Hamiltonian

Ĥσpσ0q “ e
i
}Tσpσ0qHσe

´ i
}Tσpσ0q ´ }Eσpσ0q

ż

R3

ψ˚pxqψpxqdx ;

where Eσpσ0q ÝÑ
σÑ8

´8 is the divergent self-energy.

Theorem III.2. @n P N, Dσ0pn, }q, @σ0 ă σ ď 8:

‚ Ĥσpσ0q
∣∣
Hn

self-adjoint with domain D̂σ,n Ă Q
`

H0

∣∣
Hn

˘

;

‚ Ĥσpσ0q
∣∣
Hn

σÑ8
ÝÑ

‖ ¨ ‖-res
Ĥpσ0q

∣∣
Hn

self-adjoint; and the corresponding

unitary groups converge strongly.

We want to extend the defintion of Ĥpσ0q
∣∣
Hn

to the whole Fock space

ΓspL
2 ‘ L2q; however this can be done in many ways. We choose the

following that is most suited for the limit }Ñ 0.

Theorem/Definition III.1 (Renormalized Hamiltonians). @σ0 P R
`,

DNpσ0, }q such that

Ĥpσ0q :“

#

Ĥpσ0q
∣∣
Hn

n ď Npσ0, }q

0 n ą Npσ0, }q
,

Hrenpσ0q :“ e´
i
}T8pσ0qĤpσ0qe

i
}T8pσ0q ,

are self-adjoint on H . Given σ0 P R
` and } P R`, we say that the

renormalized dynamics is non-trivial in any sector with at most Npσ0, }q
non-relativistic bosons. The number Npσ0, }q can be explicitly computed;

in particular it is proportional to σ0, and inversely proportional to }.

IV. S-KGα[Y] revisited: classical dressing. S-KGα[Y] is the Hamil-

tonian equation corresponding to the energy functional E defined in (1).

We denote by Ep¨q : RˆpH1‘FH1{2q Ñ H1‘FH1{2 the corresponding

Hamiltonian flow in the energy space. In other words, Eptqpu0, α0q is the

solution at time t of S-KGα[Y].

Now we introduce a group of nonlinear symplectic transformation on

the energy space, called classical dressing. Let the functional Dg8pσ0q :
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L2 ‘ L2 Ñ R be defined as follows:

Dg8pσ0qpu, αq “

ż

R6

`

g8pσ0, kqᾱpkqe
´ik¨x`ḡ8pσ0, kqαpkqe

ik¨x
˘

|upxq|2dxdk .

Then the corresponding Hamiltonian flow Dg8pσ0qpθq : H1 ‘FH1{2 ý

for any θ P R, and it has an explicit and easy form whenever g has fixed

parity.

Remark IV.1. Using the standard Wick quantization, we obtain the

following very interesting results:

‚ pE qWick “ x ¨ , H ¨ y (not well-defined);

‚
`

Ê pσ0q
˘Wick

:“
`

E ˝ Dg8pσ0qp´1q
˘Wick

“ x ¨ , Ĥpσ0q ¨ y (renor-

malized and well-defined on any sector with at most Npσ0, }q
non-relativistic bosons);

‚ Eptq “ Dg8pσ0qp1q ˝ Êpσ0, tq ˝ Dg8pσ0qp´1q
Quant

Õ
}Ñ0?

e´
i
} tHrenpσ0q “

e´
i
}T8pσ0qe´

i
} tĤpσ0qe

i
}T8pσ0q.

Therefore Ê pσ0q seems to be the form of the energy most suitable for

quantization.

V. The “classical” meaning of σ0. inf
pu,αqPDpE q

E pu, αq “ ´8; on the

other hand inf
pu,αqPDpE q

‖u‖2ď
?

C

E pu, αq ą ´8.

Since Eptq preserves the L2-norm (mass) of Schrödinger’s equation, the

constraint ‖u‖2 ď
?
C that makes the energy bounded below is a natural

assumption. It is also natural to look for quantum configurations that

make the classical energy bounded from below, i.e. we consider to be

admissible families of quantum states only those families whose classical

limits are probability measures in M pL2 ‘ L2q, concentrated inside the

“ball”

BCpuq “ DpE q X
!

pu, αq P L2 ‘ L2, ‖u‖2 ď
?
C
)

.

We remark that this is only a necessary condition, since there may be

families of quantum states whose limits are all concentrated inside BCpuq,

but have an unbounded from below or undefined quantum energy.

Proposition V.1. Any state %} on H with at most rC{}s P N non-

relativistic particles can be written as a linear combination:

%} “
ÿ

iPN

λip}q|ψip}qyxψip}q| ,
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where each ψip}q P H has non-zero components only on
ÀrC{}s

n“0 Hn. In

addition, if %} has at most rC{}s P N non-relativistic particles, then

%}k
}kÑ0
Ñ
kÑ8

µ P M pL2 ‘ L2q ñ µ is concentrated inside BCpuq .

Finally, p%}q}Pp0,1q satisfies

(A0) p@k P NqTr

ˆ

%}

´

ż

R3

ψ˚pxqψpxqdx
¯k

˙

ď Ck .

In the light of the above, it would be suitable to have a way of defining –

for any C ą 0 – the quantum dynamics on the relevant sector
ÀrC{}s

n“0 Hn.

This is possible, uniformly in }, exploiting the freedom of choice of σ0: it

is sufficient to choose a σ0 satisfying
´

rσ0´2M
2} ´ 1s “

¯

Npσ0, }q ě rC{}s .

Here M is a constant that depends only on the parameters of E (masses

and coupling constant, that are all fixed in these notes). Therefore the

choice of σ0 is in some sense constrained by the physical requirement that

the classical energy should be bounded from below.

VI. Bohr’s correspondence principle. We are now ready to give a

precise meaning to the quantum-classical dictionary of Section I. We make

the following assumptions on quantum states: the first is assumption (A0)

above, the second is the following

`

DK ą 0
˘`

@} P p0, 1q
˘

Tr

ˆ

%}

´

ż

R3

ψ˚pxqψpxqdx`

ż

R3

a˚pkqapkqdk

`e´
i
}T8pσ0qH0e

i
}T8pσ0q

¯

˙

ď K .

(A%)

The latter assumption means, roughly speaking, that the family of states

has uniformly bounded mass and dressed free energy density.

Theorem VI.1 (Ammari - F. 2016). Let C ą 0, and let σ0pCq be such

that e´
i
} tHrenpσ0q is non-trivial on any state with at most rC{}s non-

relativistic bosons. If p%}q}Pp0,1q is a family of quantum states satisfying

(A0) and (A%), then the correspondence principle holds for evolved states:

%}k
}kÑ0
Ñ
kÑ8

µ ô e
´ i

}k
tHrenpσ0q%}ke

i
}k
tHrenpσ0q

looooooooooooooooomooooooooooooooooon

%}k ptq

}kÑ0
Ñ
kÑ8

Eptq#µ , @t P R .

Corollary VI.2 (Informal). For suitably regular densely defined classical

observables b : L2‘L2 Ą Dpbq Ñ R, and suitable quantization procedures
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Quant} , the correspondence principle holds (weakly) for observables:

%}k
}kÑ0
Ñ
kÑ8

µ ô Tr
´

%}kptqb
Quant}

¯

}kÑ0
Ñ
kÑ8

ż

Dpbq

bpu, αqd
`

Eptq#µ
˘

pu, αq,@t P R .

Remark VI.3. With the notation %}k Ñ µ it is meant that the gen-

erating functional G%}k : L2 ‘ L2 Ñ C of %}k converges to the Fourier

transform Fµ : L2 ‘ L2 Ñ C of a unique probability measure µ.

VII. Outline of the proof. The idea is to exploit the classical identity

Eptq “ Dg8pσ0qp1q ˝ Êpσ0, tq ˝ Dg8pσ0qp´1q to relate the dressed and un-

dressed evolution. This is of crucial importance since we have an explicit

form only for Ĥpσ0q (as a quadratic form).

The core of the proof is to prove the convergence:

(2) %}k
}kÑ0
Ñ
kÑ8

µ ô e
´ i

}k
tĤpσ0q%}ke

i
}k
tĤpσ0q }kÑ0

Ñ
kÑ8

Êptq#µ , @t P R .

The other steps are a simple combination of the following results:

‚ %}k
}kÑ0
Ñ
kÑ8

µ ô e
´ i

}k
θT8pσ0q%}ke

i
}k
θT8pσ0q }kÑ0

Ñ
kÑ8

Dg8pσ0qpθq#µ ,

for any θ P R and σ0 P R
`;

‚ %}ptq “ e´
i
}T8pσ0qe´

i
} tĤpσ0qe

i
}T8pσ0q%}e

i
}T8pσ0qe

i
} tĤpσ0qe´

i
}T8pσ0q;

‚ Eptq “ Dg8pσ0qp1q ˝ Êpσ0, tq ˝ Dg8pσ0qp´1q .

The proof of (2) is obtained as follows. With a term-by-term analysis,

we identify the classical limit of the interaction picture integral equation:

Tr
´

%̃}kptqW}kpξq
¯

“ Tr
´

%̃}kW}kpξq
¯

` i
}k

ż t

0

Tr
´

%̃}k
“`

Ĥpσ0q´H0

˘

,W}kpξ̃sq
‰

¯

ds .

We thus obtain a transport equation for a classical measure µ̃t:

Btµ̃t `∇T
`

Vptqµ̃t
˘

“ 0 .

This equation is solved by µ̃t “ E0p´tq#Êptq#µ0. In addition, exploiting

the regularity properties of µ0 (inherited by those of %p0q) it is also pos-

sible to prove that the aforementioned solution is unique, using optimal

transportation techniques.
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