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ELECTRODYNAMICS OF NONRELATIVISTIC CHARGES
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CLASSICAL ELECTRODYNAMICS
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Electrodynamics of nonrelativistic charges Classical Electrodynamics

Classical charged particles interacting with the EM field

[ ] ‘ Newton—Maxwell Equations: ‘

. _pj
9 = m;

p; = m;(0; * E)(q;) + p; x (¢; * B)(q;) - V;V(q)

aB()+VxE() =0

3E() - VxB() ==Y, 2o —q)
V-E() =Y,0( —q)
V- -B()=0
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Electrodynamics of nonrelativistic charges Classical Electrodynamics

Folklore: Disasters with (Almost) Point Charges

m | Point Charges:

0y = e = i
(electrostatic energy unbounded from below, atomic collapse by radiation)

" ‘Charges with a small radius: ‘1

0y = efﬂ{‘,ljef} - 7

mj

(existence of runaway and non-causal solutions)

LE.J. Moniz, D.H. Sharp, Phys. Rev. D 15(10), 1977.
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Electrodynamics of nonrelativistic charges Classical Electrodynamics

Well-Posedness

= | Global Well-Posedness (V € 672):

0y “regular enough” = GWP on suitable Sobolev spaces for E and B:

0y € H! = GWP on the space with E (H%)x3 and B € (H%)x3
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QUANTUM ELECTRODYNAMICS
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Electrodynamics of nonrelativistic charges Quantum Electrodynamics

Quantized charged particles interacting with the Quantum
EM field (Coulomb Gauge)

n ‘ Pauli-Fierz Hamiltonian: ‘

SR o
Hh_z;,%( - A;(g;,a) @)> + V(g +Hy,
J
S € ; (k) 2orik-G; s -2k
Z Jos (Fo;k)dy (k)™ U + F o (k) a (ke i) dk
A=1 ‘[2|k

H; = Z Jas k@ (oyaz (kydke

(G, Bi] = i85, [, (k)% ()] = h6 ;8 (k = p) .

Quantum Dynamics: ‘

ya(t) =e il yhe iy .
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Electrodynamics of nonrelativistic charges Quantum Electrodynamics

Well-Posedness

= | Global Well-Posedness (V € 672):

oy € H'nH? = Hy is self-adjoint on D(p*) N D(H) .

Remarks

= More singular Vs are allowed (e.g. Coulomb)

m Folklore is that point charges shall be admissible, however it is still mathematically
an open problem (a renormalization is required)

m Atoms are stable, and no runaway or non-causal solutions are present
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BoOHR’'S CORRESPONDENCE AND QUANTUM DRIVEN
CLASSICAL TRAJECTORIES
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Q-DRIVEN CLASSICAL TRAJECTORIES — PART 1
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_ Q-Driven Classical Trajectories — Part 1
Quantum Driven Classical GWP

Theorem 1 (Z. Ammari, MF, F. Hiroshima 2022)

oy € H' nH'=% = (N-M) GWP on the space s.t. E € (H) and B € (H?)™

0<o<

1
2
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Bohr's Correspondence and Quantum Driven Classical Trajectories Q-Driven Classical Trajectories — Part 1

Schematic proof of Theorem 1: Taking a Quantum Detour

e‘%’Hh () e%’Hh
74ld0. Po- Eg. Bo] + > 71(1)[Qo, Pos Eo, Bo]
i
q—detour"l h—-0
\\\ ,
ug = (do, Pos Eg, Bg) o (N-M) flow -~ > u; = (q, P, Ef, By)
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BoOHR’S CORRESPONDENCE PRINCIPLE IN QED
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Bohr's Correspondence and Quantum Driven Classical Trajectories Bohr’s Correspondence Principle in QED

Semiclassical g-states

[ ] ‘Wigner Measures: ‘

® Quantum states:

v, € SH(L2(R3) @ [, (L2(R3,C?2)))

m Classical states:
pe P(R¥@L2(R3,C?)) > pe P(R¥ @ (L2(R3)3 @ (L2(R?))3)
u,=(q.p,(a;,a,)) u=(q,p,E,B)

= Quantum — Classical (Wigner measure):

Th du(u) < puis the Wigner measure of y,,
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Bohr's Correspondence and Quantum Driven Classical Trajectories Bohr’s Correspondence Principle in QED

m Noncommutative g-Fourier Transform:

‘(mp»é+q-ﬁ)+%<a1 (al>+d2<a2)+d’;<a1)+a2(a2>>>)

7nluy) = Tr(}’hWh(“a)) = Tr(}’hel
u Fourier transform of u:
e2nim(ua,z)du(z)

filug) = fR3"®L2(R3,C2)

m Semiclassical convergence:

e f:())dﬂ(u) = }EI(}}A’;‘(VM“) = ﬁ(ua)

Q-detour: QED - CED

arco Falconi (Pol




Bohr's Correspondence and Quantum Driven Classical Trajectories | Bohr's Correspondence Principle in QED

Quantization

= ‘ Classical symbol: ‘

F(uy) = fo1(a,p) +foa(ay, az) + fi(uy)

with the constraint that fy,.f; are polynomial in @ and @, (the classical
Hamiltonian for example).

:
- - Wick ), Wick
Fy = Oph)(fm) +O0py, " (for) + OP;,) )

where Op;fviCk means that we substitute a ; with @, &, with a%, and order
all the @% on the left of the ;.
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Bohr's Correspondence and Quantum Driven Classical Trajectories Bohr's Correspondence Principle in QED

m | Semiclassical Limit:‘

vi = dp) = limTr(7,F) F(2)dp(z) .

h—0

- fR3"€BL2(R3,C2)
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Bohr's Correspondence and Quantum Driven Classical Trajectories Bohr's Correspondence Principle in QED

The Correspondence Principle?

Theorem 2 (Z. Ammari, MF, F. Hiroshima 2022)
- £ tHy, LtH)
(-)eh
Tht : : > 7a(0)
h—-0 h—-0
HO f =%51\],1\/[)(.) > Hl

2For coherent states and smooth charge distributions, Bohr's correspondence principle was
established by A. Knowles, PhD Thesis, ETH Ziirich, 2009.
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Bohr's Correspondence and Quantum Driven Classical Trajectories | Bohr's Correspondence Principle in QED

Remarks

m ¢t pu, is dictated by the Liouville transport equation associated to the
Newton-Maxwell system: pu, = $§N_M)(y0).

m The Newton-Maxwell Liouville flow “solves”, as usual, the Newton-Maxwell
equation in a much weaker form that the one we seek, stated in Theorem 1.

m The theorem above is an Egorov-type theorem, however it is weaker than the
usual Egorov theorem due to the fact that this system has infinitely many
degrees of freedom.
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Q-DRIVEN CLASSICAL TRAJECTORIES — PART 2
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Bohr's Correspondence and Quantum Driven Classical Trajectories | Q-Driven Classical Trajectories — Part 2

Proof of Theorem 1

= ‘A priori uniqueness: ‘

oy € H' nH'"% = There exists at most one H-solution of (N-M)

u | Liouville flow: | 3
(N-M)

[A priori ! 1A [3p, = B! (no)] =3

'u, sol. of (N-M) for pg-a.a. u

‘ 311, solution of N-M Liouville equation is yielded by Theorem 2 ‘

= ‘ Saturating classical configurations via coherent states: ‘

Yuo 37 ,[ug] (coherent state of minimal uncertainty): y;[uo] = A8, ()

3C. Rouffort, arXiv 1809.01450, 2018.
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OUTLOOK
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Outlook

Future Developments

[ ‘Application to other models‘ : There are other models, perhaps less
interesting physically (Frohlich polaron), where the quantum-to-classical
features appear even more transparently (classical instability vs. quantum
stability, quantum-driven classical dynamics,...)

[ ‘ Diamagnetic Inequality‘ . classical Eg(0) = Eg(A); quantum Ej(0) < E,(A)

n ‘Charges with small radii ‘ : Moniz-Sharp on solid mathematical grounds

m | Point Charges|: Solve the quantum obstructions to point particles, and
define the classical point dynamics by taking the “quantum detour”

24/25
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